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Abstract

We suggest one variant of generalization of the Hurwitz transformation by
adding seven extra variables that allow an inverse transformation to be obtained.
Using this generalized transformation we establish the connection between the
Schrödinger equation of a 16-dimensional isotropic harmonic oscillator and that
of a nine-dimensional hydrogen-like atom in the field of a monopole described
by a septet of potential vectors in a non-Abelian model of 28 operators. The
explicit form of the potential vectors and all the commutation relations of the
algebra are given.

PACS numbers: 03.65.−w, 03.65.Fd

1. Introduction

There exists a connection between an n-dimensional hydrogen-like atom and an N-dimensional
harmonic oscillator for very few cases of dimension n → N such as 2 → 2, 3 → 4, 5 → 8,
9 → 16 (see, for example [1–4]). Indeed, according to the Hurwitz theorem [5], only for
the cases of dimension mentioned above can one establish a bilinear transformation from
n-dimensional real space to N-dimensional real space that satisfies the Euler identity√

x2
1 + x2

2 + · · · + x2
n = u2

1 + u2
2 + · · · + u2

N .

These bilinear transformations are called Levi–Civita [6], Kustaanheimo–Stiefel [7], Hurwitz
transformations (see, for example [8]) depending on the cases of dimension (2 → 2), (3 → 4),
(5 → 8, 9 → 16) correspondingly. Using them with (N − n) certain constraints applied to
the wavefunctions one can transform the Schrödinger equation of an N-dimensional harmonic
oscillator to that of a hydrogen-like atom in n-dimensional real space [1–4].

In the case of 3 → 4, the inversion of Kustaanheimo–Stiefel transformation u1, u2, u3,

u4 → x1, x2, x3, φ has been established by introducing the extra variable φ = artan(u2/u1)

[9]. This inverse transformation is called Cayley–Klein transformation [9] and was used in
the works [10] to connect a harmonic oscillator not only to a hydrogen-like atom but also to it

1751-8113/09/175204+08$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/17/175204
http://stacks.iop.org/JPhysA/42/175204


J. Phys. A: Math. Theor. 42 (2009) 175204 Van-Hoang Le et al

with the presence of the Dirac monopole field. For more interpretations of the extra variable
φ see also [11].

In [12] we have introduced three Euler angles as extra variables to Hurwitz transformation
(5 → 8) that allow the inverse transformation from u1, u2, . . . , u8 to x1, x2, . . . , x5, φ1, φ2, φ3

to be established. Later on, the result was used for the connection between the eight-
dimensional harmonic oscillator and the problem of a five-dimensional hydrogen atom in
the field of the SU(2) non-Abelian monopole [13]. This problem has attracted a great deal of
interest [14, 15].

Naturally, the question arising is how to apply a similar concept for the last case of Hurwitz
transformation (9 → 16). In the present paper, we will generalize the Hurwitz transformation
by adding to it seven extra variables that allow us to build an inverse transformation
u1, u2, . . . , u16 → x1, x2, . . . , x9, φ1, φ2, . . . , φ7. Applying the obtained result we lead the
Schrödinger equation of a 16-dimensional harmonic oscillator to that of a nine-dimensional
system of ‘charge-dyon’ in a non-Abelian model of closed algebra of 28 elements. This system
looks like a nine-dimensional hydrogen-like atom in a field of a monopole described by septet
of potential vectors. In other words, we have found the non-Abelian monopole solution hidden
in the solutions of a 16-dimensional harmonic oscillator.

2. Generalized Hurwitz transformation (9 → 16)

According to [4], the Hurwitz transformation can be written as follows:

xk = 2(�k)stusvt x9 = usus − vsvs (1)

that connects the nine-dimensional real space of coordinates x1, x2, . . . , x9 to the 16-
dimensional real space of coordinates u1, u2, . . . , u8, v1, v2, . . . , v8. Indices k, s, t in (1)
run from 1 to 8. Here, repeating indices means summation over them; matrices �k are defined
as follows:

�1 =
[
β

0
0
β

]
, �2 =

[
βα1α3

0
0

βα1α3

]
, �3 =

[
α3

0
0
α3

]
,

�4 =
[
α1

0
0

−α1

]
, �5 =

[
0

iα1α2

−iα1α2

0

]
, �6 =

[
0

iβα2α3

−iβα2α3

0

]
,

�7 =
[

0
βα3

−βα3

0

]
, �8 =

[
0
α1

α1

0

]
(2)

in which β = [
I

0
0

−I

]
, αk = [ 0

σk

σk

0

]
; I and σk (k = 1, 2, 3) are unit and Pauli matrices,

respectively. All matrices (2) are real, either symmetrical or anti-symmetrical and satisfy the
condition

�k�
T
j − �j�

T
k = 2δjkI. (3)

The Euler identity

r = √
xλxλ = usus + vsvs (4)

can be easily verified. From here on, Greek symbols are used for indicating the coordinates
xλ with index λ = 1 → 9 but wherever necessary we use the Latin symbol to denote the index
of xj with valuej = 1 → 8.
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Now let us define also seven extra variables as follows:

α1 = arctan
u2

u1
, α2 = arctan

u4

u3
, α3 = arctan

u6

u5
, α4 = arctan

u8

u7
,

φ1 = arctan
2
√

u2
1 + u2

2 + u2
3 + u2

4

√
u2

5 + u2
6 + u2

7 + u2
8

u2
1 + u2

2 + u2
3 + u2

4 − u2
5 − u2

6 − u2
7 − u2

8

,

φ2 = arctan
2
√

u2
1 + u2

2

√
u2

3 + u2
4

u2
1 + u2

2 − u2
3 − u2

4

,

φ3 = arctan
2
√

u2
5 + u2

6

√
u2

7 + u2
8

u2
5 + u2

6 − u2
7 − u2

8

.

(5)

We see that all additional variables defined by (5) can be interpreted as angles.
Formula (1) with additional (5) is one variant of generalization of Hurwitz transformation

which connects two 16-dimensional real spaces (x, φ, ϕ) → (uv). Especially, the inverse
transformation (uv) → (x, φ, ϕ) can be established now as follows:

us = √
r + x9 bs(φα) vs = xj√

r + x9
Hjs(φα), (6)

where the functions bs(φα) depend on angles (5) only and have the explicit form

b1 = 1√
2

cos(φ1/2) cos(φ2/2) cos α1, b2 = 1√
2

cos(φ1/2) cos(φ2/2) sin α1,

b3 = 1√
2

cos(φ1/2) sin(φ2/2) cos α2, b4 = 1√
2

cos(φ1/2) sin(φ2/2) sin α2,

b5 = 1√
2

sin(φ1/2) cos(φ3/2) cos α3, b6 = 1√
2

sin(φ1/2) cos(φ3/2) sin α3,

b7 = 1√
2

sin(φ1/2) sin(φ3/2) cos α4, b8 = 1√
2

sin(φ1/2) sin(φ3/2) sin α4.

Matrix elements Hjs(φα) can be expressed via bs(φα) as

H(βα) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 −b2 b3 b4 −b5 −b6 b7 b8

b2 b1 −b4 b3 b6 −b5 −b8 b7

−b3 b4 b1 b2 −b7 b8 −b5 b6

−b4 −b3 −b2 b1 b8 b7 b6 b5

b5 −b6 b7 −b8 b1 b2 −b3 b4

b6 b5 −b8 −b7 −b2 b1 b4 b3

−b7 b8 b5 −b6 b3 −b4 b1 b2

−b8 −b7 −b6 −b5 −b4 −b3 −b2 b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can see that H(φα) has the structure of a Hurwitz matrix (see, for example [8]).
In the case of Kustaanheimo–Stiefel transformation (3 → 4) the inverse form is called

Cayley–Klein [9]. For the case of Hurwitz transformation (5 → 8) the analogical form was first
given in [12]. According to our knowledge the transformation (6) for Hurwitz transformation
(9 → 16) is established in the present paper for the first time. This explicit inverse form is
very convenient to use for concrete calculations as shown in the following sections.

3. Connection between Schrödinger equations

Let us consider the Schrödinger equation of a 16-dimensional isotropic harmonic oscillator{
−1

8

(
∂2

∂us∂us

+
∂2

∂vs∂vs

)
− 1

2
ω2(usus + vsvs)

}
�(u, v) = Z �(u, v). (7)

3
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Here ω,Z have positive real values and are correspondingly the frequency and energy of the
harmonic oscillator. After directly applying the transformation (6) to equation (7), using (3)
we have{

−1

2

∂2

∂xλ∂xλ

− 1

2
(�j )st vt

∂φk

∂us

∂2

∂xj ∂φk

− 1

8

∂φk

∂us

∂φj

∂us

∂2

∂φk∂φj

− 1

8

∂2φk

∂us∂us

∂

∂φk

− Z

r

}
�(r, φα) = E �(r, φα), (8)

where E = −ω2/2 is a negative number that denotes the energy of bound states; Z becomes a
parameter defining the ‘charge’ value in the Coulomb potential; for simplicity in notation we
use (only here) φk (k = 1, 2, . . . , 7) to indicate the angles φ1, φ2, φ3, φ4, ϕ1, ϕ2, ϕ3.

For the wavefunctions independent of the angles φϕ, say �(r), equation (8) becomes
the Schrödinger equation for a hydrogen-like atom in nine-dimensional real space. It means
that among the wavefunctions of a 16-dimensional harmonic oscillator we can extract the
wavefunctions that satisfy the following seven conditions:

∂�

∂ϕ1
= 0,

∂�

∂ϕ2
= 0,

∂�

∂ϕ3
= 0,

∂�

∂φ1
= 0,

∂�

∂φ2
= 0,

∂�

∂φ3
= 0,

∂�

∂φ4
= 0,

(9)

and they are the wavefunctions of a hydrogen-like atom in nine-dimensional space.
An interesting question appears regarding what other physical meaning is contained in

the wavefunctions of a 16-dimensional harmonic oscillator that do not satisfy conditions (9).
The answer will be provided in the following section.

4. Hidden non-Abelian monopole

By substituting the explicit expression (6) of the extra variables into equation (8) we can
rewrite it in the new form as follows:{

1

2

(
−i

∂

∂xλ

+ Aλk(r)Î kλ̃(φϕ)

) (
−i

∂

∂xλ

+ Aλk(r)Î kλ̃(φϕ)

)

+
1

2r
Î 2(φϕ) − Z

r

}
�(r, φα) = E �(r, φα) (10)

with the septet of potential vectors Aλk(r)(λ = 1, 2, . . . , 9; k = 1, 2, . . . , 7)

Aλ1 = i

2r(r + x9)
(−x2, x1, x4,−x3, x6,−x5, x8,−x7, 0)

Aλ2 = i

2r(r + x9)
(x3, x4,−x1,−x2, x7,−x8,−x5, x6, 0)

Aλ3 = i

2r(r + x9)
(x4,−x3, x2,−x1, x8, x7,−x6,−x5, 0)

Aλ4 = i

2r(r + x9)
(−x5,−x6,−x7, x8, x1, x2, x3,−x4, 0) (11)

Aλ5 = i

2r(r + x9)
(x6,−x5, x8, x7, x2,−x1,−x4,−x3, 0)

Aλ6 = i

2r(r + x9)
(x7,−x8,−x5,−x6, x3, x4,−x1, x2, 0)

Aλ7 = i

2r(r + x9)
(−x8,−x7, x6, x5,−x4,−x3, x2, x1, 0).

4
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Table 1. Expression of operators Î kλ(φϕ).

1 2 3 4 5 6 7

1 J 0
1 + J 0

2 J +
1 + J +

2 J −
1 − J −

2 −Q+
1 − Q+

2 Q−
1 − Q−

2 K+
1 + K+

2 K−
1 − K−

2

2 J 0
1 + J 0

2 J +
1 − J +

2 J −
1 + J −

2 −Q+
1 + Q+

2 Q−
1 + Q−

2 K+
1 − K+

2 K−
1 + K−

2

3 J 0
1 − J 0

2 J +
1 + J +

2 J −
1 + J −

2 Q+
3 + Q+

4 Q−
3 + Q−

4 K+
3 − K+

4 K−
3 − K−

4

4 J 0
1 − J 0

2 J +
1 − J +

2 J −
1 − J −

2 Q+
3 − Q+

4 Q−
3 − Q−

4 K+
3 + K+

4 K−
3 + K−

4

5 J 0
3 + J 0

4 J +
3 + J +

4 J −
3 − J −

4 −Q+
1 − Q+

2 Q−
1 + Q−

2 K+
3 − K+

4 K−
3 + K−

4

6 J 0
3 + J 0

4 J +
3 − J +

4 J −
3 + J −

4 −Q+
1 + Q+

2 Q−
1 − Q−

2 K+
3 + K+

4 K−
3 − K−

4

7 J 0
3 − J 0

4 J +
3 + J +

4 J −
3 + J −

4 Q+
3 + Q+

4 Q−
3 − Q−

4 K+
1 + K+

2 K−
1 + K−

2

8 J 0
3 − J 0

4 J +
3 − J +

4 J −
3 − J −

4 Q+
3 − Q+

4 Q−
3 + Q−

4 K+
1 − K+

2 K−
1 − K−

2

In equation (10) we have 56 operators Î kλ̃(φϕ)(λ = 1, 2, . . . , 8; k = 1, 2, . . . , 7) but only 28
of them are different. Here and further, the symbol λ̃ with the ∼ means the repeating index
that does not indicate the summation over them. For convenience we will define 28 other
operators Ĵ 0

s , Ĵ±
s , Q̂±

s ,K̂±
s (s = 1, 2, 3, 4) and express Î kλ̃(φϕ) via them as shown in table 1.

The 28 operators Ĵ 0
s , Ĵ±

s , Q̂±
s ,K̂±

s set up a closed algebra as will be shown in the following
section, where the explicit form of these operators and their commutation relations will be
given.

It is easy to verify that the septet of potential vectors (11) holds the following properties:

xλAλk = 0, AλjAλk = δjk

r − x9

4r2(r + x9)
(12)

for every value k = 1, 2, . . . , 7 and has a singularity line along the negative part of axis
ox9. We can say that each term of (11) concerns the nine-dimensional vector potential of the
monopole. Indeed, remember the case of the Dirac monopole [10] where the potential vector
has the form

Aλ = i

2r(r + x3)
(−x2, x1, 0)

and satisfies a condition like (12):

xλAλ = 0, AλAλ = r − x3

4r2(r + x3)
.

Analogically, in the case of a non-Abelian SU(2) model [13], a monopole field is described
by a triplet of potential vectors

Aλ1 = 1

r(r − x5)
(−x2, x1, x4,−x3, 0)

Aλ2 = 1

r(r − x5)
(x3, x4,−x1,−x2, 0)

Aλ3 = 1

r(r − x5)
(x4,−x3, x2,−x1, 0)

that satisfy the condition similar to (12) and associate with three operators of SU (2) algebra.
Thus, in our case, we deal with a monopole described by a septet of potential vectors (11)
associating with 28 operators of a closed algebra. By dimension, the SO(2n) algebra has
(2n − 1) × n elements equal to 28 in the case of n = 4 that suggests to us to consider the
system described by (11) with 28 operators Ĵ 0

s , Ĵ±
s , Q̂±

s ,K̂±
s as a non-Abelian SO (8) model of

the monopole. However it needs additional investigation, which we will do in our next works.

5
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5. The algebra

In this section we will give the explicit form of 28 operators Ĵ 0
s , Ĵ±

s , Q̂±
s ,K̂±

s and their
commutation relations.

First of all, we define three operators

Ĵ 0
1 = ∂

∂α1
+

∂

∂α2

Ĵ +
1 = sin(α1 + α2)

(
tan(φ2/2)

∂

∂α1
− cot(φ2/2)

∂

∂α2

)
+ 2 cos(α1 + α2)

∂

∂φ2

Ĵ−
1 = cos(α1 + α2)

(
tan(φ2/2)

∂

∂α1
− cot(φ2/2)

∂

∂α2

)
− 2 sin(α1 + α2)

∂

∂φ2

(13)

which have such a form that α1, α2, φ2 can be considered as three Euler angles. The other
operators Ĵ can be obtained from operators (13) too. Particularly, operators Ĵ 0

2, Ĵ
+
2, Ĵ

−
2

are defined from (13) by changing α1 → α3, α2 → α4, φ2 → φ3; J 0
3 , J +

3 , J−
3 and

J 0
4 , J +

4 , J−
4 are from J 0

1 , J +
1 , J−

1 and J 0
2 , J +

2 , J−
2 just by changing α2 → −α2 and α4 → −α4

correspondingly. It is easy to verify that 12 operators Ĵ 0
s , Ĵ

+
s , Ĵ

−
s (s = 1, 2, 3, 4) satisfy the

following commutation relations:[
J−

s , J−
t

] = 0,
[
J +

s , J +
t

] = 0[
J +

s , J−
t

] = 2δst̃ J
0
t ,

[
J 0

s , J±
t

] = ±2δst̃ J
∓
t .

(14)

Now let us define the operators Q̂, the first of which have the explicit form:

Q̂+
1 = sin(α1 + α3)

(
− tan(φ1/2) cos(φ3/2)

cos(φ2/2)

∂

∂α1
+

cot(φ1/2) cos(φ2/2)

cos(φ3/2)

∂

∂α3

)

− 2 cos(α1 + α3)

(
cos(φ2/2) cos(φ3/2)

∂

∂φ1
+ sin(φ2/2) cos(φ3/2) tan(φ1/2)

∂

∂φ2

− cos(φ2/2) sin(φ3/2) cot(φ1/2)
∂

∂φ3

)
(15)

Q̂−
1 = cos(α1 + α3)

(
− tan(φ1/2) cos(φ3/2)

cos(φ2/2)

∂

∂α1
+

cot(φ1/2) cos(φ2/2)

cos(φ3/2)

∂

∂α3

)

+ 2 sin(α1 + α3)

(
cos(φ2/2) cos(φ3/2)

∂

∂φ1
+ tan(φ1/2) sin(φ2/2) cos(φ3/2)

∂

∂φ2

− cot(φ1/2) cos(φ2/2) sin(φ3/2)
∂

∂φ3

)
.

The other operators Q̂ can be obtained from (15) too. Indeed, Q̂+
2, Q̂

−
2 are from −Q̂+

1,−Q̂−
1

by changing α1 → α2, α3 → α4, φ2 → π − φ2, φ3 → π − φ3 whereas Q̂+
3, Q̂

−
3 and Q̂+

4, Q̂
−
4

are from Q̂+
1,−Q̂−

1 and Q̂+
2, Q̂

−
2 by changing α3 → −α3 and α4 → −α4, respectively. Eight

operators Q̂+
s , Q̂

−
s (s = 1, 2, 3, 4) together with four operators Ĵ 0

s (s = 1, 2, 3, 4) construct a
close algebra because they satisfy the following commutation relations:[

Q̂+
s , Q̂

+
t

] = 0,
[
Q̂−

s , Q̂−
t

] = 0[
Q̂+

s , Q̂
−
t

] = δstαs̃q Ĵ
0
q,

[
Ĵ 0

s , Q̂
±
t

] = ±αst̃ Q̂
∓
t ,

(16)

where the structure constants αst are elements of the matrix

α =

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎠ .

6
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We will define also eight operators K+
s , K−

s (s = 1, 2, 3, 4) as follows: K+
1 ,K−

1 from
Q+

1,Q
−
1 by changing α2 → α1, φ2 → π − φ2; K+

2 ,K−
2 from K+

1 ,K−
1 by changing α2 → α1,

α3 → α4, φ2 → π − φ2, φ3 → π − φ3; K+
3 ,K−

3 from K+
1 ,K−

1 by changing α3 → −α3;
K+

4 ,K−
4 from K+

2 ,K−
2 by changing α4 → −α4. These operators satisfy[

K+
s , K+

t

] = 0,
[
K−

s , K−
t

] = 0[
K+

s , K−
t

] = (−1)δ3t δstαs̃qJ
0
q ,

[
J 0

s , K±
t

] = ±(−1)δ3t αst̃K
∓
t .

(17)

Consequently, we have 28 operators including J 0
s , J±

s ,Q±
s , K±

s (s = 1, 2, 3, 4) that
construct a closed algebra. Indeed, besides (14), (16), (17) additionally these operators satisfy
the following commutation relations:[
J +

s ,Q+
t

] = K+
{s+(−1)s+1(t+1)},

[
J−

s ,Q−
t

] = (−1)δ3t αs̃t̃K
+
{s+(−1)s+1(t+1)},[

Q+
s , K

+
t

] = J +
{s+(−1)s+1(t+1)},

[
Q−

s , K−
t

] = (−1)δ3t αs̃t̃ J
+
{s+(−1)s+1(t+1)},[

K+
s , J +

t

] = Q+
{s+(−1)s+1(t+1)},

[
K−

s , J−
t

] = (−1)δ3t αs̃t̃Q
+
{s+(−1)s+1(t+1)},[

J +
s ,Q−

t

] = (−1)δ1s+δ3t K−
{s+(−1)s+1(t+1)},

[
Q−

s , K+
t

] = −(−1)δ1s αs̃t̃ J
−
{s+(−1)s+1(t+1)},[

Q+
s , K

−
t

] = (−1)δ3t +δ1s J−
{s+(−1)s+1(t+1)},

[
K−

s , J +
t

] = −(−1)δ1s αs̃t̃Q
−
{s+(−1)s+1(t+1)},[

K+
s , J−

t

] = (−1)δ3t +δ1s Q−
{s+(−1)s+1(t+1)},

[
J−

s ,Q+
t

] = −(−1)δ1s αs̃t̃K
−
{s+(−1)s+1(t+1)}.

(18)

Here δst is Kronecker delta and the index n = {s + (−1)s+1(t + 1)} should take an integer
value of 1, 2, 3, 4 only. With the indices s, t having the value of 1, 2, 3, 4 the formula
s + (−1)s+1(t + 1) gives an integer number from −3 to +8 out of the index range. Therefore,
we use the circular rule denoted by the bracket { } to relate them with the index value 1, 2, 3,
4 as follows:

{−3} = 1, {−2} = 2, {−1} = 3, {0} = 4,

{1} = 1, {2} = 2, {3} = 3, {4} = 4,

{5} = 1, {6} = 2, {7} = 3, {8} = 4.

6. Summary and outlook

We have successfully built the generalized Hurwitz transformation by adding seven extra new
variables. The inverse transformation thus has been established. An interesting result has
been achieved in the wavefunctions of a 16-dimensional harmonic oscillator hidden in the
solutions of a nine-dimensional ‘charged-dyon’ system of a non-Abelian model. Although the
explicit algebra associated with the model has been given, detailed investigation needs to be
performed in the near future. The connection established between two fundamental problems
such as a 16-dimensional harmonic oscillator and the nine-dimensional ‘charge-dyon’ system
gives us the simple way to investigate the dynamical symmetry of the latter. That is analogical
to what we have successfully done for the case of lower dimensions [12]. We will return to
this problem in our next work.
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